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Abstract. In this paper Legendre wavelet bases have been used for find-

ing approximate solutions to singular boundary value problems arising

in physiology. When the number of basis functions are increased the

algebraic system of equations would be ill-conditioned (because of the

singularity), to overcome this for large M , we use some kind of Tikhonov

regularization. Examples from applied sciences are presented to demon-

strate the efficiency and accuracy of the method.
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1. Introduction

Many numerical treatments for singular boundary value problems have been

emerged in recent years [7, 10, 15, 24, 19, 1]. Recently Kazemi Nasab has ap-

plied wavelet analysis method with Chebyshev wavelets for solving some singu-

lar differential equations [16]. In their method Chebyshev wavelets operational

matrix of derivations is proposed for constructing the linear system. Wavelet

Galerkin method has also applied to some nonlinear singular boundary value

problems by Nosrati in [17]. They have used the quasilinearization technique to

reduce the given nonlinear problem to a sequence of linear problems. SVBP’s

has also been solved and analyzed by other methods. Some examples for recent

works are [18, 20, 21, 14]. In this paper we apply the Galerkin method [11, 9],

with Legendre wavelet bases for finding an approximate solution to a special

kind of singular boundary value problems. Legendre wavelet bases have been

applied to many equations [28, 6, 26], and the results demonstrate the accu-

racy and efficiency of these bases. The main characteristic of this approach is

that it reduces functional equations to a system of algebraic equations, that

greatly simplify the problem. This paper is organized as follows: In section 2

we introduce Legendre wavelets and it’s properties, in section 3 we present the

main BVP and discuss how to apply Legendre wavelet bases to this equation.

Section 4 is devoted to examples where we have compared results with other

methods.

2. Legendre Wavelet

Wavelet theory is an improvement subject of Fourier analysis. The mathe-

matical properties of wavelets has been studied and organized by Daubechies

[8], for the first time. She built an orthogonal wavelet basis with some degree

of smoothness. Wavelet bases, especially multiwavelets, have been applied for

solving different kinds of functional equations. Some of wavelet bases are con-

structed based on orthogonal polynomials, among them are Legendre wavelets

[6, 26] and Chebyshev wavelets [3, 4]. These wavelet bases are orthogonal and

have compact supports, that makes them more appropriate for solving bound-

ary value problems.

Clifford wavelets are another special case of wavelet bases [2]. To construct

a wavelet basis one uses dilation and translations of a single function (with

some properties), called the mother wavelet. When the dilation parameter a

and translation parameter b vary continuously we have the following family of

continuous wavelets as [12],

ψa,b(x) = |a|−1/2ψ(
t− a

b
), a, b ∈ R, a ̸= 0.

If we restrict the parameters a and b to take discrete values a = a−k
0 , b =

nb0a
−k
0 , where a0 > 0, b0 > 0, and n, k positive integers, then one has the



Applying Legendre Wavelet Method with Regularization· · · 59

following family of discrete wavelets:

ψk,n(x) = |a0|k/2ψ(ak0t− nb0),

where ψk,n(x) forms a wavelet basis for L2(R). In particular, when a0 = 2 and

b0 = 1, then ψk,n(x) forms an orthonormal basis [12].

Legendre wavelets ψk,n(x) = ψ(k, n̂,m, t) have four arguments; n̂ = 2n−1, n =

1, 2, ..., 2k−1, k can assume any positive integer, m is the order of Legendre

polynomials and t is the normalized time. They are defined on the interval

[0, 1] as:

ψn,m(x) =

{
(m+ 1/2)1/22k/2Pm(2kt− n̂), n̂−1

2k
≤ t ≤ n̂+1

2k
,

0, otherwise,
(2.1)

where m = 0, 1, ...,M − 1, n = 1, 2, ..., 2k−1. In equation (2.1), the coeffi-

cient (m+ 1)1/2 is for orthonormality, the dilation parameter is a = 2−k, and

translation parameter is b = n̂2−k. Here, Pm(x) is the well-known Legendre

polynomial of order m, which is orthogonal with respect to the weight function

w(x) = 1 on interval [−1, 1] and satisfy the following recursive formula [5]:

P0(x) = 1, P1(x) = t,

Pm+1(x) = (
2m+ 1

m+ 1
)tPm(x)− (

m

m+ 1
)Pm−1(x), m = 1, 2, 3, . . . .

A function f(x) defined over [0, 1) may be expanded as [25]:

f(x) =
∞∑

n=1

∞∑
m=0

cn,mψn,m(x), (2.2)

because of orthonormality we have cn,m = (f(x), ψn,m(x)), where (, ) denotes

the inner product.

If the infinite series in equation (2.2) is truncated, then it can be written as

f(x) =
2k−1∑
n=1

M−1∑
m=0

cn,mψn,m(x) = CTΨ(x), (2.3)

where C and Ψ(x) are 2k−1M × 1 matrices given by

C = [c10, ..., c1M−1, c20, ..., c2M−1, ..., c2k−10, ..., c2k−1M−1]
T , (2.4)

Ψ(x) = [ψ10(x), ..., ψ1M−1, ψ20, ..., ψ2M−1, ..., ψ2k−10, ..., ψ2k−1M−1]
T .

3. Singular Boundary Value Problem

3.1. The main equation. In this paper we consider a nonlinear singular BVP

of the form [1],

(p(x)y′)′ = p(x)f(x, y), x ∈ (0, 1], (3.1)

with boundary conditions (BCs),

y′(0) = 0, αy(1) + βy′(1) = γ, (3.2)
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or

y(0) = A, αy(1) + βy′(1) = γ, (3.3)

where p(x) = xbg(x), x ∈ [0, 1]. Here α > 0, β ≥ 0, and A and γ are finite

constants. Also, the following resrictions are imposed on p(x) and f(x, y):

(I) p(x) > 0 on [0, 1], p(x) ∈ C1(0, 1], and 1
g(x) is analytic in {z s.t. |z| < r}

for some r > 1.

(II) f(x, y) ∈ [0, 1] × R, is continuous, ∂f
∂y exists, continuous and nonnega-

tive for all (x, y) ∈ [0, 1]×R.

The existence-uniqueness of the solution to equation (3.1) has been established

for BCs: y(0) = A and y(1) = B, with 0 ≤ b < 1, and BC’s: y′(0) = 0 and

y(1) = B with b ≥ 0, provided that xp′

p is analytic in {z s.t. |z| < r} for some

r > 1 [22, 23].

Equation (3.1) arises in the study of tumor growth problems, steady-state oxy-

gen diffusion in a cell with Michaleis-Menten uptake kinetics and distribution

of heat sources in the human head [1].

3.2. Applying Legendre Wavelet Method to the BVP. As we have men-

tioned in section 2, the support of ψn,m(x) is [n−1
N , n

N ], so with k = 1 we have

N = n = 1, and the support of ψn,m(x) will be [0, 1], that is appropriate for

our equation.

Now for selected M , we have basis functions ψ1m for m = 0, ...,M − 1 with

supp ψ1m ⊆ [0, 1].

Based on equation (2.3) the approximation of the solution is

y(x) = c0ψ10(x) + ...+ cM−1ψ1,M−1(x). (3.4)

Applying (3.4) to equation (3.1) we have,

p(x)(c0ψ
′′

10(x) + ...+ cM−1ψ
′′

1,M−1(x))

+p
′
(x)(c0ψ

′

10(x) + ...+ cM−1ψ
′

1,M−1(x)) = p(x)f(x, y). (3.5)

As f(x, y) is usually a nonlinear function, we use the linear approximation

instead, i.e. f(x, y) ≃ f(x, 0) + y ∂f
∂y (x, 0). So the main equation (3.5) will lead

to:

p(x)(c0ψ
′′

10(x) + ...+ cM−1ψ
′′

1,M−1(x))

+p
′
(x)(c0ψ

′

10(x) + ...+ cM−1ψ
′

1,M−1(x))

= p(x)(f(x, 0) + (c0ψ10(x) + ...+ cM−1ψ1,M−1(x))
∂f

∂y
(x, 0)).(3.6)
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For calculating ci’s we use the boundary conditions and collocation method at

the uniform mesh points in [0, 1] i.e. xi =
i

M−1 for i = 1, ...,M − 2.

3.3. Error analysis. By the assumption y(x) =
∑
cmϕ1m(x) and because of

the orthonormality of the Legendre wavelet bases we have

ErrM = ||y(x)−
m=M−1∑

m=0

cmϕ1m(x)|| = ||
m=∞∑
m=M

cmϕ1m(x)||

≤
m=∞∑
m=M

|cm|||ϕ1m(x)|| ≤
m=∞∑
m=M

|cm|. (3.7)

It is clear that limErrM = 0 when M → ∞ if
∑m=∞

m=0 |cm| converges. One

sufficient condition for the convergence of the series is that for n ≥ k, | cn+1

cn
| ≤

l < 1, for some constants k, l.

4. Numerical Examples

In this section we apply the Legendre wavelet bases to some special case of

equation (3.1). Comparing the results with other numerical methods verify the

efficiency of the approach.

4.1. Example 1. Consider the boundary value problem [1]:

(p(x)y′)′ = p(x)f(x, y), x ∈ [0, 1],

p(x) = xbg(x), g(x) = ex, f(x, y) =
5x3(5x5ey − x− b− 4)

4 + x5
,

y′(0) = 0, y(1) + 5y′(1) = −5− ln5. (4.1)

This problem is an application of oxygen diffusion for special values of the pa-

rameters. We solve this equation based on Legendre wavelet method for b = .5,

withM = 8, 16, 32, and compare the results with other numerical methods such

as, Pandey’s method [19], and cubic spline method with economized Chebyshev

polynomial [1]. Now by the previous discussion in Section 3, for M = 8 the

coefficients of the approximate solution appry(x) =
∑7

m=0 cmϕ1m(x) would be:

c0 = −1.592645395, c1 = −0.5503774870e− 1, c2 = .2646779215,

c3 = .3803579572, c4 = .2579476901, c5 = .1006784330,

c6 = 0.2210981278e− 1, c7 = 0.2182403182e− 2.

Here we have | cn+1

cn
| ≤ .5, for n ≥ 5 that shows the convergence of the result.

TABLE 1. Compares the error of the above solution (LWM) with Pandey’s

method and cubic spline method (CSM).

For M = 16 the corresponding coefficients are:

c0 = −1.2028100292365663886, c1 = .62395284352695186896,

c2 = 1.1603186798256836839, c3 = 1.3764189093866981764,
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Table 1. Error Comparison of Example 1 for M=8

x LWM Pandey’s method CSM

0 0.0143 0.01 0.01

0.1 0.0143 0.01 0.01

0.2 0.0143 0.01 0.01

0.3 0.0143 0.01 0.01

0.4 0.0144 0.01 0.01

0.5 0.0144 0.01 0.01

0.6 0.0144 0.01 0.01

0.7 0.0143 0.01 0.01

0.8 0.0142 0.01 0.01

0.9 0.0140 0.01 0.01

1 0.0138 0.01 0.01

c4 = 1.1925446221025341289, c5 = .83323308639869402496,

c6 = .49506950020581057962, c7 = .24763588752320647322,

c8 = 0.97328977716939060262e− 1, c9 = 0.25678152930182439947e− 1,

c10 = 0.17416008269448818104e− 2, c11 = −0.21579300142439125728e− 2,

c12 = −0.12139357853083133079e−2, c13 = −0.34670540047873153539e−3,

c14 = −0.57156327436667180150e−4, c15 = −0.44131194744956478780e−5.

Here we have | cn+1

cn
| ≤ .6 for n ≥ 11, that shows the convergence of the result.

TABLE 2. Compares the error of the above solution with Pandey’s method

and cubic spline method.

Table 2. Error Comparison of Example 1 for M=16

x LWM Pandey’s method CSM

0 0.001 0.004 0.0005

0.1 0.001 0.004 0.0006

0.2 0.001 0.004 0.0007

0.3 0.001 0.004 0.0008

0.4 0.001 0.004 0.0009

0.5 0.001 0.004 0.001

0.6 0.001 0.004 0.001

0.7 0.001 0.004 0.001

0.8 0.0009 0.004 0.001

0.9 0.0006 0.004 0.001

1 0.0003 0.004 0.001

For the case M = 32 after solving the obtained system of equations the

coefficients will read:
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Table 3. Error Comparison of Example 1 for M=32

x LWM CSM Pandey’s method

0 0.001 0.0002 0.001

0.1 0.001 0.0002 0.001

0.2 0.001 0.0002 0.001

0.3 0.001 0.0002 0.001

0.4 0.001 0.0003 0.001

0.5 0.001 0.0003 0.001

0.6 0.001 0.0003 0.001

0.7 0.001 0.0004 0.001

0.8 0.0009 0.0004 0.001

0.9 0.0006 0.0004 0.001

1 0.0003 0.0004 0.001

c0 = −1.5668260410297211678, c1 = 0.31637315031420237439e−1,

c2 = .47387878260649028773, c3 = .65878260230042063800,

c4 = .46548259990476093538, c5 = .10511439460261074765,

c6 = −.21095600158051484798, c7 = −.38786801631568180130,
c8 = −.40746450342068380586, c9 = −.30303162031950710379,
c10 = −.14142051146184570842, c11 = 0.10525780886752447026e−1,

c12 = .11245184223067013243, c13 = .15541004211045685499,

c14 = .15192765061995161302, c15 = .12255589530900139502,

c16 = 0.85755699399196535512e−1, c17 = 0.53187349489469040464e−1,

c18 = 0.29537830272285305238e−1, c19 = 0.14749458491914828458e−1,

c20 = 0.66240114851239284737e−2, c21 = 0.26684115548987174765e−2,

c22 = 0.95917608050199466452e−3, c23 = 0.30527693739622463659e−3,

c24 = 0.85125989085420864322e−4, c25 = 0.20506845231683404921e−4,

c26 = 0.41876336045955541507e−5, c27 = 7.0595970148133046232e−7,

c28 = 9.4491021347606179554e−8, c29 = 9.4321810986874658009e−9,

c30 = 6.2544537267760213078e−10, c31 = 2.0707985493565530533e−11.

Here we have | cn+1

cn
| ≤ .5, for n ≥ 18, that shows the convergence of the result.

TABLE 3. compares the error of the above solution with Pandey’s method and

cubic spline method.

4.2. Example 2. Consider the boundary value problem with different bound-

ary conditions [1]

(p(x)y′)′ = p(x)f(x, y), x ∈ [0, 1],

p(x) = xbg(x), g(x) = ex, f(x, y) =
5x3(5x5ey − x− b− 4)

4 + x5
,

y(0) = −ln(4), y(1) + 5y′(1) = −5− ln5. (4.2)
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Table 4. Error Comparison of Example 2 for M=8

x LWM Pandey’s method CSM

0 0.002 0.01 0.01

0.1 0.001 0.01 0.01

0.2 0.003 0.01 0.01

0.3 0.005 0.01 0.01

0.4 0.006 0.01 0.01

0.5 0.006 0.01 0.01

0.6 0.006 0.01 0.01

0.7 0.006 0.01 0.01

0.8 0.007 0.01 0.01

0.9 0.006 0.01 0.01

1 0.007 0.01 0.01

Like Example 1. we solve this equation based on Legendre wavelet method

for b = .5, with M = 8, 16, 32, and compare the results with other numerical

methods i.e. Pandey’s method [19], and cubic spline method (CSM) with econ-

omized Chebyshev polynomial [1]. Now by the previous discussion in Section

3, for M = 8 we have,

c0 = −1.6323890648023684584, c1 = −.12650608370150377892, c2 = .20029627168678081152,

c3 = 0.33317488451180765903, c4 = 0.23186579146191620765, c5 = 0.089467617979900008625,

c6 = 0.018840642930622664031, c7 = 0.0015998548484048946861.

Here we have | cn+1

cn
| ≤ .5, for n ≥ 4, that shows the convergence of the result.

TABLE 4. compares the error of the above solution with Pandey’s method and

cubic spline method (CSM).

For the case M = 16 we have,

c0 = −37.085253912476237102, c1 = −56.382387992419169590,

c2 = −60.703824875283847864, c3 = −54.921822452560235841,

c4 = −43.612294016803071709, c5 = −30.776654094799875849,

c6 = −19.343588818066637877, c7 = −10.808394161573297029,

c8 = −5.3420120863121277913, c9 = −2.3135269148713642482,

c10 = −.86462951838697314197, c11 = −.27246910604372655571,
c12 = −0.06989453397567813757, c13 = −0.01378581711369125920,

c14 = −0.00187885539802706148, c15 = −0.00013554317589891528.

Here we have | cn+1

cn
| ≤ .5 for n ≥ 7, that shows the convergence of the result.

TABLE 5. compares the error of the our method with cubic spline method.
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Table 5. Error Comparison of Example 2 for M=16

x L. W. M. C. S. M

0 0.0002 0.0008

0.1 0.0003 0.0009

0.2 0.0004 0.001

0.3 0.0005 0.001

0.4 0.0005 0.001

0.5 0.0005 0.001

0.6 0.0005 0.001

0.7 0.0005 0.001

0.8 0.0004 0.001

0.9 0.0001 0.001

1 0.0001 0.001

Similarly, for M = 32 we come to the following coefficients:

c0 = −4.6358693076092977194 ∗ 106, c1 = −6.7582264983241763273 ∗ 106,
c2 = −5.9099142767810083574 ∗ 106, c3 = −3.1770021176532618076 ∗ 106,
c4 = 2.1188760718345176772 ∗ 105, c5 = 3.0419453143786254232 ∗ 106,
c6 = 4.4978182063968003491 ∗ 106, c7 = 4.3729982946561054292 ∗ 106,
c8 = 3.0178295836150515531 ∗ 106, c9 = 1.0918111655220634394 ∗ 106,
c10 = −7.3825057261862819434, c11 = −2.0216877298043717294 ∗ 106,
c12 = −2.6041990921200130978 ∗ 106, c13 = −2.5783384180672618095 ∗ 106,
c14 = −2.1664432264550479477 ∗ 106, c15 = −1.6038311314732019976 ∗ 106,
c16 = −1.0646835980362944770 ∗ 106, c17 = −6.3943235427383833427 ∗ 105,
c18 = −3.4890121013572833342 ∗ 105, c19 = −1.7316778052680677547 ∗ 105,
c20 = −78099.00000139694805, c21 = −31912.487693990200350,

c22 = −11757.36500885325238, c23 = −3878.575888516679465,

c24 = −1134.7567159384624654, c25 = −290.64966939574863,

c26 = −64.022020715699201532, c27 = −11.825148046192491,

c28 = −1.763743121252254, c29 = −.199859762088155,
c30 = −0.15358571058327e− 1, c31 = −0.6035246206578086981e− 3.

As the coefficient matrix is ill-conditioned for M = 32, the coefficients are

very large (and so far from the main solution). Here we use Tikhonov regu-

larization method (TRM) [27] to stabilize the solution. In regularization we

change the ill-posed main equation with another equation that is less ill-posed.

Tikhonov regularization is a well-known method of regularization. One impor-

tant part in Tikhonov method is to find the optimum value of regularization

parameter (µ). For more details one can see [13]. The results after applying

TRM (with µ = 5× 10−13) are as follows:
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Table 6. Error Comparison of Example 2 for M=32

x LWM CSM

0 0.00000001 0.0001

0.1 0.0002 0.0001

0.2 0.0004 0.0001

0.3 0.0005 0.0001

0.4 0.0005 0.0001

0.5 0.0006 0.0001

0.6 0.0006 0.0001

0.7 0.0006 0.0001

0.8 0.0005 0.0001

0.9 0.0002 0.0001

1 0.00001 0.0001

c0 = −.89023366514234935536, c1 = .54799351644467802312,

c2 = .22987869633682692909, c3 = −.14654224228351210740,
c4 = −.19880287660064923473, c5 = 0.023855558285009152128,

c6 = 0.15688511320033616955, c7 = 0.042604455456950835228,

c8 = −.10699218169413489446, c9 = −0.078671951067718633939,

c10 = 0.054008137231122075279, c11 = 0.090551316510355457336,

c12 = −0.00424055919158032434, c13 = −0.08017636560392272455,

c14 = −0.03681827705766728097, c15 = 0.05236514881053306866,

c16 = 0.06114904944238824772, c17 = −0.01245121070830249877,

c18 = −0.06372770902085218976, c19 = −0.02806763699295286968,

c20 = 0.04048107925096862155, c21 = 0.05527295912277616750,

c22 = 0.00308355940655701700, c23 = −0.05026157850544944020,

c24 = −0.04830911919951919830, c25 = 0.00171251540542644326,

c26 = 0.05026641780697775711, c27 = 0.06421752678679124589,

c28 = 0.04746665224675341727, c29 = 0.023347956100351489280,

c30 = 0.0073387604485453123500, c31 = 0.00123384792989866633.

Here we have | cn+1

cn
| ≤ .6 for n ≥ 27, that shows the convergence of the re-

sult (see TABLE 6).

4.3. Example 3. Consider the oxygen diffusion equation of the form [24]:

y′′ +
m

x
y′ = f(x, y), x ∈ [0, 1],

y′(0) = 0, αy(1) + βy′(1) = γ. (4.3)

Where f(x, y) = ny
y+k , and m = 2, n = .76129, k = .03119, α = γ = 5, β = 1.

Applying Legendre wavelet method with k = 1 and M = 32 we have :
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Table 7. Solution Value Comparison of Example 3 for M=32

x LWM PSM

0 0.828476 0.828483

0.1 0.829700 0.829706

0.2 0.833373 0.833374

0.3 0.839495 0.839489

0.4 0.848067 0.848052

0.5 0.859088 0.859064

0.6 0.872560 0.872528

0.7 0.888484 0.888445

0.8 0.906860 0.906818

0.9 0.927690 0.927650

1 0.950974 0.950945

y ≈
n=31∑
n=0

ciψ1,m(x).

The coefficients are as follows:

c0 = .18637357115746482205, c1 = −1.1141233030658516145,

c2 = −1.2623851202435653868, c3 = −1.0644847689670253742,

c4 = −.66554436091794497683, c5 = −.22290530480950376606,
c6 = .16043912855554241194, c7 = .42100765080111951420,

c8 = .54145133504248797753, c9 = .54218085557660869357

c10 = .46430169915258098816, c11 = .35187677758224507944,

c12 = .23947228060133984272, c13 = .14713182630357617675,

c14 = 0.81545096255112911761e− 1, c15 = 0.40494645804697287309e− 1,

c16 = 0.17744240927783100144e− 1, c17 = 0.6640777408545381566e− 2,

c18 = 0.19553596541082371574e− 2, c19 = 0.32134055776911934200e− 3,

c20 = −0.8994773725108570e−4, c21 = −0.11516214722833478323e−3,

c22 = −0.66376937395763533374e−4, c23 = −0.28523642688714613922e−4,

c24 = −0.9986718938107383240e−5, c25 = −0.2916411354424721527e−5,

c26 = −7.10029902212191186e− 7, c27 = −1.418596989179960221e− 7,

c28 = −2.2525886046482555e− 8, c29 = −2.683910447798546e− 9,

c30 = −2.14635754835878e− 10, c31 = −8.695564890323e− 12.

TABLE 7. Reports the comparison of the resulted solution with that of Pandey

and Singh method (PSM) [19]. It should be mentioned that the errors are about

10−5.

5. Conclusion

In this paper Legendre wavelet method has been applied to some singular

boundary value problems. The results are comparable with other numerical
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approaches. In the proposed method, the results are efficient near the singular

point x = 0. Moreover the estimation error obtained in Section 3, are verified

with the results.
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